Let's restrict to special relativity, meaning two inertial frames moving in a Minkowski spacetime.
A clock in the first inertial frame ticks slower, when seen from the second. A clock in the second inertial frames ticks slower, when seen from the first.
Now assume, that you are fixed to one of the two inertial frames. Usually you measure velocities within your own inertial frame, meaning measuring distance and time in your inertial frame to calculate the velocity of the other frame. In this case you'll get a velocity below the speed of light.
If you measure the distance in your inertial frame, and divide this distance by the time you observe on the clock of the moving inertial frame, you'll get higher velocities, which may exceed the speed of light. But this result has only the dimension of a velocity; it is not a velocity with respect of any of the two inertial frames.
The moving observer would observe a slow-down of external events, not a speed-up.
The observer would observe a speed-up only in the sense of a relativistic Doppler blue-shift when moving towards the observed object.
The people on the destination planet age the same as on the Earth, provided they don't move relative to the Earth. It's just you, since you travel that fast, the distance gets shorter, and therefore the time for the travel also gets shorter. By the Doppler shift and space contraction you'll see them age faster.
From Alpha Centauri, it's again the space contraction for the traveller, making the distance shorter. Again we have a combined space contraction/Doppler effect looking the people on Earth aging rapidly for about 4.5 years.
For people on Earth observing the travel takes 4.5 years. For the traveller it may take just a few days. With an acceleration of just 1g you could traverse the Milky Way in about 20 years, seen from the spaceship. The same travel seen from Earth would take about 100,000 years.
No comments:
Post a Comment