There is a geometric way to show that $n$-gon circumscribed around an ellipse has minimal perimeter if it is inscribed in a confocal ellipse. From Poncelet porism (and generalization of optical property) it follows that we have continuous family of "minimal" polygons.
If we know it, then it is easy to understand that the circumscribed rhomb (from your question) and the circumscribed rectangular (with perimeter $4(a+b)$) are minimal polygons. So, side of the rhomb equals $a+b$.
No comments:
Post a Comment