Thursday, 30 November 2006

complex multiplication - Class Field Theory for Imaginary Quadratic Fields

Here is a case where it is non-Abelian. I use $K$ of class number 3. If I use the Gross curve, it is Abelian. If I twist in $Q(sqrt{-15})$, it is Abelian for every one I tried, maybe because it is one class per genus. My comments are not from an expert.



> K<s>:=QuadraticField(-23);                                                    
> jinv:=jInvariant((1+Sqrt(RealField(200)!-23))/2);
> jrel:=PowerRelation(jinv,3 : Al:="LLL");
> Kj<j>:=ext<K|jrel>;
> E:=EllipticCurve([-3*j/(j-1728),-2*j/(j-1728)]);
> HasComplexMultiplication(E);
true -23
> c4, c6 := Explode(cInvariants(E)); // random twist with this j
> f:=Polynomial([-c6/864,-c4/48,0,1]);
> poly:=DivisionPolynomial(E,3); // Linear x Linear x Quadratic
> R:=Roots(poly);
> Kj2:=ext<Kj|Polynomial([-Evaluate(f,R[1][1]),0,1])>;
> KK:=ext<Kj2|Polynomial([-Evaluate(f,R[2][1]),0,1])>;
> assert #DivisionPoints(ChangeRing(E,KK)!0,3) eq 3^2; // all E[3] here
> f:=Factorization(ChangeRing(DefiningPolynomial(AbsoluteField(KK)),K))[1][1];
> GaloisGroup(f); /* not immediate to compute */
Permutation group acting on a set of cardinality 12
Order = 48 = 2^4 * 3
> IsAbelian($1);
false


This group has $A_4$ and $Z_2^4$ as normal subgroups, but I don't know it's name if any.



PS. 5-torsion is too long to compute most often.

No comments:

Post a Comment