Ok here are the partial derivatives $k_M$:
they are dual to ${b^M} = {dy^mu,dtheta^alpha}$ ie:
$b^M(k_N)=delta_N^M$
Writing $k_N=(k_N)^{mu}frac{partial}{partial x^mu}+(k_N)^{alpha}frac{partial}{partial theta^alpha}$ and solving $b^nu(k_mu)=delta^nu_mu,;b^mu(k_alpha)=0; ; b^alpha(k_nu)=0;;b^alpha(k_beta)=delta^alpha_beta$ one finds:
$(k_mu)^nu=delta^nu_mu,;(k_mu)^alpha=0;;(k_alpha)^beta=delta^beta_alpha;;(k_alpha)^nu=-eta_alpha^{;;mu}$
So:
$frac{partial}{partial y^mu} = frac{partial}{partial x^mu}$
$frac{partial}{partial y^alpha} = -eta^{;;mu}_alpha frac{partial}{partial x^mu} + frac{partial}{partial theta^alpha}$
No comments:
Post a Comment